skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prusnick, Timothy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Violet phosphorus (VP) is garnering attention for its appealing physical properties and potential applications in optoelectronics. A comprehensive investigation of the photodegradation and thermal effects of exfoliated VP on SiO2/Si substrates is presented. The degradation rate of VP is strongly influenced by the wavelength and exposure duration of light. Light illumination of VP above the bandgap leads to faster degradation, attributed to interactions with reactive oxygen species. Power‐dependent photoluminescence (PL) measurements at low temperature (T = 4 K) show neutral exciton (X0) and trion (T) intensities linearly increase with excitation power, while the energy difference between peak energies decreases. The T/X0spectral weight ratio increases from 0.28 at 300 K to 0.69 at 4 K, suggesting enhanced T formation due to reduced phonon scattering. Temperature‐dependent Raman is used to investigate the phonon properties of VP. Tracking peak positions of 9 Raman modes with temperature, the linear first‐order temperature coefficient is obtained and found to be linear for all modes. The results provide a deeper understanding of VP's degradation behavior and implications for optoelectronic applications. 
    more » « less